52 research outputs found

    The value of tibial mounted inertial measurement units to quantify running kinetics in elite football (soccer) players. A reliability and agreement study using a research orientated and a clinically orientated system

    Get PDF
    In elite football, measurement of running kinetics with inertial measurement units (IMUs) may be useful as a component of periodic health examination (PHE). This study determined the reliability of, and agreement between a research orientated IMU and clinically orientated IMU system for initial peak acceleration (IPA) and IPA symmetry index (SI) measurement during running in elite footballers. On consecutive days, 16 participants performed treadmill running at 14kmph and 18kmph. Both IMUs measured IPA and IPA SI concurrently. All measurements had good or excellent within-session reliability (intraclass correlation coefficient (ICC2,1) range = 0.79-0.96, IPA standard error of measurement (SEM) range = 0.19-0.62 g, IPA SI SEM range = 2.50-8.05%). Only the research orientated IMU demonstrated acceptable minimal detectable changes (MDCs) for IPA at 14kmph (range = 7.46-9.80%) and IPA SI at both speeds (range = 6.92-9.21%). Considering both systems, between-session IPA reliability ranged from fair to good (ICC2,1 range = 0.63-0.87, SEM range = 0.51-1.10 g) and poor to fair for IPA SI (ICC2,1 range = 0.32-0.65, SEM range = 8.07-11.18%). All MDCs were >10%. For IPA and SI, the 95% levels of agreement indicated poor between system agreement. Therefore, the use of IMUs to evaluate treadmill running kinetics cannot be recommended in this population as a PHE test to identify prognostic factors for injuries or for rehabilitation purposes

    A review of the use of propensity score diagnostics in papers published in high-ranking medical journals

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2019-07-10, accepted 2020-04-26, registration 2020-04-27, pub-electronic 2020-05-27, online 2020-05-27, collection 2020-12Publication status: PublishedFunder: Medical Research Council (UK); Grant(s): 1789957Abstract: Background: Propensity scores are widely used to deal with confounding bias in medical research. An incorrectly specified propensity score model may lead to residual confounding bias; therefore it is essential to use diagnostics to assess propensity scores in a propensity score analysis. The current use of propensity score diagnostics in the medical literature is unknown. The objectives of this study are to (1) assess the use of propensity score diagnostics in medical studies published in high-ranking journals, and (2) assess whether the use of propensity score diagnostics differs between studies (a) in different research areas and (b) using different propensity score methods. Methods: A PubMed search identified studies published in high-impact journals between Jan 1st 2014 and Dec 31st 2016 using propensity scores to answer an applied medical question. From each study we extracted information regarding how propensity scores were assessed and which propensity score method was used. Research area was defined using the journal categories from the Journal Citations Report. Results: A total of 894 papers were included in the review. Of these, 187 (20.9%) failed to report whether the propensity score had been assessed. Commonly reported diagnostics were p-values from hypothesis tests (36.6%) and the standardised mean difference (34.6%). Statistical tests provided marginally stronger evidence for a difference in diagnostic use between studies in different research areas (p = 0.033) than studies using different propensity score methods (p = 0.061). Conclusions: The use of diagnostics in the propensity score medical literature is far from optimal, with different diagnostics preferred in different areas of medicine. The propensity score literature may improve with focused efforts to change practice in areas where suboptimal practice is most common

    Symptoms in first degree relatives of patients with rheumatoid arthritis:evaluation of cross-sectional data from the symptoms in persons at risk of rheumatoid arthritis (SPARRA) questionnaire in the PRe-clinical EValuation of Novel Targets in RA (PREVeNT-RA) Cohort

    Get PDF
    Abstract Background First-degree relatives (FDRs) of people with rheumatoid arthritis (RA) have a fourfold increased risk of developing RA. The Symptoms in Persons At Risk of Rheumatoid Arthritis (SPARRA) questionnaire was developed to document symptoms in persons at risk of RA. The aims of this study were (1) to describe symptoms in a cohort of FDRs of patients with RA overall and stratified by seropositivity and elevated CRP and (2) to determine if patient characteristics were associated with symptoms suggestive of RA. Methods A cross-sectional study of FDRs of patients with RA, in the PREVeNT-RA study, who completed a study questionnaire, provided a blood sample measured for rheumatoid factor, anti-CCP and CRP and completed the SPARRA questionnaire. Moderate/severe symptoms and symmetrical, small and large joint pain were identified and described. Symptoms associated with both seropositivity and elevated CRP were considered suggestive of RA. Logistic regression was used to determine if symptoms suggestive of RA were associated with patient characteristics. Results Eight hundred seventy participants provided all data, 43 (5%) were seropositive and 122 (14%) had elevated CRP. The most frequently reported symptoms were sleep disturbances (20.3%) and joint pain (17.9%). Symmetrical and small joint pain were 11.3% and 12.8% higher, respectively, in those who were seropositive and 11.5% and 10.7% higher in those with elevated CRP. In the logistic regression model, seropositivity, older age and feeling depressed were associated with increased odds of small and symmetrical joint pain. Conclusions This is the first time the SPARRA questionnaire has been applied in FDRs of patients with RA and has demonstrated that the presence of symmetrical and small joint pain in this group may be useful in identifying people at higher risk of developing RA

    Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-02-06, accepted 2020-04-28, registration 2020-04-28, pub-electronic 2020-07-09, online 2020-07-09, collection 2020-12Publication status: PublishedFunder: National Institute for Health Research; doi: http://dx.doi.org/10.13039/501100000272; Grant(s): DRF-2018-11-ST2-052Abstract: Background: Clinical prediction models (CPMs) predict the risk of health outcomes for individual patients. The majority of existing CPMs only harness cross-sectional patient information. Incorporating repeated measurements, such as those stored in electronic health records, into CPMs may provide an opportunity to enhance their performance. However, the number and complexity of methodological approaches available could make it difficult for researchers to explore this opportunity. Our objective was to review the literature and summarise existing approaches for harnessing repeated measurements of predictor variables in CPMs, primarily to make this field more accessible for applied researchers. Methods: MEDLINE, Embase and Web of Science were searched for articles reporting the development of a multivariable CPM for individual-level prediction of future binary or time-to-event outcomes and modelling repeated measurements of at least one predictor. Information was extracted on the following: the methodology used, its specific aim, reported advantages and limitations, and software available to apply the method. Results: The search revealed 217 relevant articles. Seven methodological frameworks were identified: time-dependent covariate modelling, generalised estimating equations, landmark analysis, two-stage modelling, joint-modelling, trajectory classification and machine learning. Each of these frameworks satisfies at least one of three aims: to better represent the predictor-outcome relationship over time, to infer a covariate value at a pre-specified time and to account for the effect of covariate change. Conclusions: The applicability of identified methods depends on the motivation for including longitudinal information and the method’s compatibility with the clinical context and available patient data, for both model development and risk estimation in practice

    Developing prediction models to estimate the risk of two survival outcomes both occurring: A comparison of techniques

    Get PDF
    IntroductionThis study considers the prediction of the time until two survival outcomes have both occurred. We compared a variety of analytical methods motivated by a typical clinical problem of multimorbidity prognosis.MethodsWe considered five methods: product (multiply marginal risks), dual-outcome (directly model the time until both events occur), multistate models (msm), and a range of copula and frailty models. We assessed calibration and discrimination under a variety of simulated data scenarios, varying outcome prevalence, and the amount of residual correlation. The simulation focused on model misspecification and statistical power. Using data from the Clinical Practice Research Datalink, we compared model performance when predicting the risk of cardiovascular disease and type 2 diabetes both occurring.ResultsDiscrimination was similar for all methods. The product method was poorly calibrated in the presence of residual correlation. The msm and dual-outcome models were the most robust to model misspecification but suffered a drop in performance at small sample sizes due to overfitting, which the copula and frailty model were less susceptible to. The copula and frailty model's performance were highly dependent on the underlying data structure. In the clinical example, the product method was poorly calibrated when adjusting for 8 major cardiovascular risk factors.DiscussionWe recommend the dual-outcome method for predicting the risk of two survival outcomes both occurring. It was the most robust to model misspecification, although was also the most prone to overfitting. The clinical example motivates the use of the methods considered in this study

    Collecting Symptoms and Sensor Data With Consumer Smartwatches (the Knee OsteoArthritis, Linking Activity and Pain Study):Protocol for a Longitudinal, Observational Feasibility Study

    Get PDF
    BACKGROUND: The Knee OsteoArthritis, Linking Activity and Pain (KOALAP) study is the first to test the feasibility of using consumer-grade cellular smartwatches for health care research. OBJECTIVE: The overall aim was to investigate the feasibility of using consumer-grade cellular smartwatches as a novel tool to capture data on pain (multiple times a day) and physical activity (continuously) in patients with knee osteoarthritis. Additionally, KOALAP aimed to investigate smartwatch sensor data quality and assess whether engagement, acceptability, and user experience are sufficient for future large-scale observational and interventional studies. METHODS: A total of 26 participants with self-diagnosed knee osteoarthritis were recruited in September 2017. All participants were aged 50 years or over and either lived in or were willing to travel to the Greater Manchester area. Participants received a smartwatch (Huawei Watch 2) with a bespoke app that collected patient-reported outcomes via questionnaires and continuous watch sensor data. All data were collected daily for 90 days. Additional data were collected through interviews (at baseline and follow-up) and baseline and end-of-study questionnaires. This study underwent full review by the University of Manchester Research Ethics Committee (#0165) and University Information Governance (#IGRR000060). For qualitative data analysis, a system-level security policy was developed in collaboration with the University Information Governance Office. Additionally, the project underwent an internal review process at Google, including separate reviews of accessibility, product engineering, privacy, security, legal, and protection regulation compliance. RESULTS: Participants were recruited in September 2017. Data collection via the watches was completed in January 2018. Collection of qualitative data through patient interviews is still ongoing. Data analysis will commence when all data are collected; results are expected in 2019. CONCLUSIONS: KOALAP is the first health study to use consumer cellular smartwatches to collect self-reported symptoms alongside sensor data for musculoskeletal disorders. The results of this study will be used to inform the design of future mobile health studies. Results for feasibility and participant motivations will inform future researchers whether or under which conditions cellular smartwatches are a useful tool to collect patient-reported outcomes alongside passively measured patient behavior. The exploration of associations between self-reported symptoms at different moments will contribute to our understanding of whether it may be valuable to collect symptom data more frequently. Sensor data-quality measurements will indicate whether cellular smartwatch usage is feasible for obtaining sensor data. Methods for data-quality assessment and data-processing methods may be reusable, although generalizability to other clinical areas should be further investigated. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/10238

    A comparison of five methods of measuring mammographic density: a case-control study.

    Get PDF
    BACKGROUND: High mammographic density is associated with both risk of cancers being missed at mammography, and increased risk of developing breast cancer. Stratification of breast cancer prevention and screening requires mammographic density measures predictive of cancer. This study compares five mammographic density measures to determine the association with subsequent diagnosis of breast cancer and the presence of breast cancer at screening. METHODS: Women participating in the "Predicting Risk Of Cancer At Screening" (PROCAS) study, a study of cancer risk, completed questionnaires to provide personal information to enable computation of the Tyrer-Cuzick risk score. Mammographic density was assessed by visual analogue scale (VAS), thresholding (Cumulus) and fully-automated methods (Densitas, Quantra, Volpara) in contralateral breasts of 366 women with unilateral breast cancer (cases) detected at screening on entry to the study (Cumulus 311/366) and in 338 women with cancer detected subsequently. Three controls per case were matched using age, body mass index category, hormone replacement therapy use and menopausal status. Odds ratios (OR) between the highest and lowest quintile, based on the density distribution in controls, for each density measure were estimated by conditional logistic regression, adjusting for classic risk factors. RESULTS: The strongest predictor of screen-detected cancer at study entry was VAS, OR 4.37 (95% CI 2.72-7.03) in the highest vs lowest quintile of percent density after adjustment for classical risk factors. Volpara, Densitas and Cumulus gave ORs for the highest vs lowest quintile of 2.42 (95% CI 1.56-3.78), 2.17 (95% CI 1.41-3.33) and 2.12 (95% CI 1.30-3.45), respectively. Quantra was not significantly associated with breast cancer (OR 1.02, 95% CI 0.67-1.54). Similar results were found for subsequent cancers, with ORs of 4.48 (95% CI 2.79-7.18), 2.87 (95% CI 1.77-4.64) and 2.34 (95% CI 1.50-3.68) in highest vs lowest quintiles of VAS, Volpara and Densitas, respectively. Quantra gave an OR in the highest vs lowest quintile of 1.32 (95% CI 0.85-2.05). CONCLUSIONS: Visual density assessment demonstrated a strong relationship with cancer, despite known inter-observer variability; however, it is impractical for population-based screening. Percentage density measured by Volpara and Densitas also had a strong association with breast cancer risk, amongst the automated measures evaluated, providing practical automated methods for risk stratification

    How the weather affects the pain of citizen scientists using a smartphone app.

    Get PDF
    Patients with chronic pain commonly believe their pain is related to the weather. Scientific evidence to support their beliefs is inconclusive, in part due to difficulties in getting a large dataset of patients frequently recording their pain symptoms during a variety of weather conditions. Smartphones allow the opportunity to collect data to overcome these difficulties. Our study Cloudy with a Chance of Pain analysed daily data from 2658 patients collected over a 15-month period. The analysis demonstrated significant yet modest relationships between pain and relative humidity, pressure and wind speed, with correlations remaining even when accounting for mood and physical activity. This research highlights how citizen-science experiments can collect large datasets on real-world populations to address long-standing health questions. These results will act as a starting point for a future system for patients to better manage their health through pain forecasts
    • …
    corecore